首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   351篇
  免费   6篇
  国内免费   4篇
测绘学   2篇
大气科学   68篇
地球物理   51篇
地质学   104篇
海洋学   18篇
天文学   66篇
综合类   4篇
自然地理   48篇
  2022年   2篇
  2021年   3篇
  2020年   4篇
  2018年   8篇
  2017年   8篇
  2016年   5篇
  2015年   3篇
  2014年   6篇
  2013年   12篇
  2012年   6篇
  2011年   15篇
  2010年   7篇
  2009年   13篇
  2008年   7篇
  2007年   12篇
  2006年   12篇
  2005年   10篇
  2004年   17篇
  2003年   10篇
  2002年   7篇
  2001年   12篇
  2000年   10篇
  1999年   9篇
  1998年   6篇
  1997年   8篇
  1996年   9篇
  1995年   9篇
  1994年   15篇
  1993年   5篇
  1992年   5篇
  1991年   9篇
  1990年   8篇
  1989年   4篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   3篇
  1984年   9篇
  1983年   7篇
  1982年   3篇
  1981年   4篇
  1979年   4篇
  1978年   5篇
  1977年   4篇
  1976年   6篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1972年   2篇
  1971年   9篇
排序方式: 共有361条查询结果,搜索用时 15 毫秒
21.
22.
The EETA 79001 achondrite consists of two distinct igneous lithologies joined along a planar, non-brecciated contact. Both are basaltic rocks composed primarily of pigeonite, augite, and maskelynite, but one contains zoned megacrysts of olivine, orthopyroxene, and chromite that represent disaggregated xenoliths of harzburzite. Both lithologies probably formed from successive volcanic flows or multiple injections of magma into a small, shallow chamber. Many similarities between the two virtually synchronous magmas suggest that they are related. Possible mechanisms to explain their differences involve varying degrees of assimilation, fractionation from similar parental magmas, or partial melting of a similar source peridotite; of these, assimilation of the observed megacryst assemblage seems most plausible. However, some isotopic contamination may be required in any of these petrogenetic models. The meteorite has suffered extensive shock metamorphism and localized melting during a large impact event that probably excavated and liberated it from its parent body. Both basaltic lithologies and the inferred ultramafic protolith of the megacryst assemblage are petrologically similar to other members of the shergottite group, and all may have been derived from a volcanic-plutonic complex on a planetary body.  相似文献   
23.
24.
A simple analytical model is developed for the meanupcrossing rate of plume concentration fluctuations assuming that thisprocess can be well approximated by a lognormal process. The resultingexpression requires only the specification of the in-plume fluctuationintensity and in-plume Taylor micro-time scale and, hence, does notexplicitly involve the joint probability density function of theconcentration and its derivative. The analytical model provides agood fit to some field measurements of the mean upcrossing rate ina dispersing plume.  相似文献   
25.
Movement of soil particles in atmospheres is a normal planetary process. Images of Martian dust devils (wind-spouts) and dust storms captured by NASA's Pathfinder have demonstrated the significant role that storm activity plays in creating the red atmospheric haze of Mars. On Earth, desert soils moving in the atmosphere are responsible for the orange hues in brilliant sunrises and sunsets. In severe dust storm events, millions of tons of soil may be moved across great expanses of land and ocean. An emerging scientific interest in the process of soil transport in the Earth's atmosphere is in the field of public and ecosystem health. This article will address the benefits and the potential hazards associated with exposure to particle fallout as clouds of desert dust traverse the globe. This revised version was published online in September 2006 with corrections to the Cover Date.  相似文献   
26.
Important parameters of estuarine variability include morphology, flushing times, nutrient loading rates, and wetland: water ratios. This variability both reflects and disguises underlying relationships between the physics and biology of estuaries, which this comparative analysis seeks to reveal, using the Gulf of Mexico (GOM) estuaries as a starting point. A question used to focus this analysis is: are the GOM estuaries unique? The GOM receives the Mississippi River, a uniquely large, world-class river, which dominates the freshwater and nutrient inflows to the GOM continental shelf, whose margins include 35 major estuarine systems. These GOM estuaries have 28% and 41% of the U.S. estuarine wetlands and open water, respectively. Within the GOM, estuarine nitrogen, phosphorus, and suspended matter loading varies over 2 orders of magnitude. Anoxic estuarine events tend to occur in estuaries with relatively slow freshwater turnover and high nitrogen loading. Compared to estuaries from other regions in the U.S., the average GOM estuary is distinguished by shallower depths, faster freshwater flushing time, a higher wetland area:open water area ratio, greater fisheries yield per area wetland, lower tidal range, and higher sediment accumulation rates. The average GOM estuary often, but not always, has a flora and fauna not usually found in most other U.S. estuaries (e.g., manatees and mangroves). Coastal wetland loss in the GOM is extraordinarily high compared to other regions and is causally linked to cultural influences. Variations in nutrient loading and population density are very large among and within estuarine regions. This variation is large enough to demonstrate that there are insufficient systematic differences among these estuarine regions that precludes cross-system analyses. There are no abrupt discontinuities among regions in the fisheries yields per wetland area, tidal amplitude and vegetation range, salt marsh vertical accretion rates and organic accumulations, nitrogen retention, or wetland restoration rates. These results suggest that a comparative analysis emphasizing forcing functions, rather than geographic uniqueness, will lead to significant progress in understanding how all estuaries function, are perturbed, and even how they can be restored.  相似文献   
27.
Natural shelterbelts, unlike planar barriers, have a certain width, within which interactions among wind speed, drag force and pressure perturbations create a net sheltering effect. The variations of flow, drag force, permeability, and pressure perturbation for shelterbelts of different widths and different horizontal structures are numerically studied, and their influences on shelter efficiency are discussed. Comparisons are made of fourteen medium-dense shelterbelts, with the same overall leaf-area, that differ only in width or horizontal distribution of leaf-area density. The simulated results are consistent with both field observations and wind-tunnel measurements.The simulations demonstrate that the total drag force of the entire shelterbelt varies little with changes in width and structure. The results also show that shelter distance and the overall average wind speed reduction decrease only by 15–18% as width increases by a factor of 100, and changes even less for different internal structure. However, width greatly affects the location of minimum wind speed, pressure perturbation, and the permeability of shelterbelts. Horizontal changes of wind speed inside the uniform shelterbelts have four different patterns, which depend on shelterbelt width and height. The absolute pressure perturbation significantly decreases with increasing width. A possible cause of the insensitivity of shelter efficiency to width and internal inhomogeneous structure is the compensation between the effects of permeability and pressure perturbation on shelter efficiency.  相似文献   
28.
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号